HM1C SERIES

Anderson Greenwood Instrumentation Hand Valves

A large 5/8" (16mm) bore, straight-through and roddable bi-directional flow valve for pressures to 3500 psig (241 barg)

General Application

The HM1C is suitable for severe service, high pressure/ temperature applications and features a Cv rating of 9.8, which allows for high flow capacities. It is also ideal for process conditions where potential plugging is a concern.

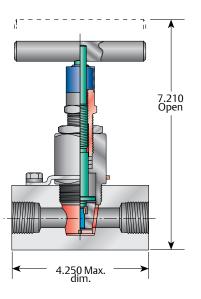
TECHNICAL DATA

Materials CS, 316 SS Seats: Soft Connections Inlet: 3/4" to 1" NPT Outlet: 1/2" to 1" NPT Presuure (max): 3500 psig (241 barg) Temperature (min/max): -70°F to 400°F (-57°C to 204°C)

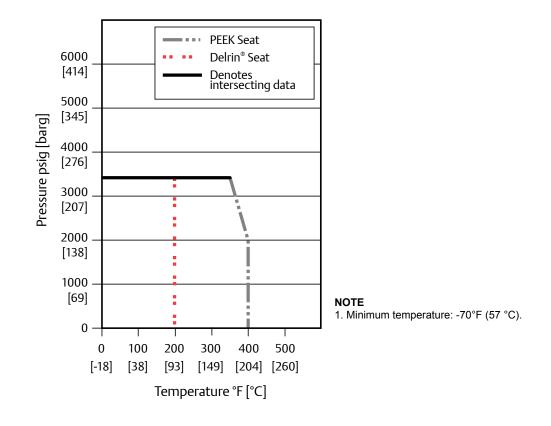
Features

- Plug stem end provides bubble-tight shutoff and ensures long valve life.
- Replaceable/repairable seat ensures long, safe and economically installed valve life.
- Large handle ensures ease of operation.
- All valves pressure tested prior to shipment. Material traceability on body is standard on request.
- PTFE packing is easily adjustable in the field.
- All packing is below the threads to eliminate contamination by the process, ensure smooth valve operation and long service life.
- Safety back seating prevents accidental stem blowout and removal under pressure.
- Upgraded bonnet lock plate prevents accidental removal under pressure.
- Standard dust cover ensures long service.
- Wide variety of inlet and outlet configurations and materials.

1


HM1C SERIES

Anderson Greenwood Instrumentation Hand Valves


Bonnet Assembly

The HM1C features a roddable soft seated design with replaceable seats, providing easy cleanout and replacement.

All stem threads are rolled and lubricated to prevent galling and reduce operating torque. The bonnet assembly has a one-piece rotating stem and plug. The stem seal is a patented PTFE or graphite packing gland which is adjustable in service. All bonnets are assembled with a bonnet locking pin to prevent accidental removal while in service and a protective dust cap is fitted to contain stem lubricant and prevent the influx of contaminants.

Pressure vs. Temperature

HM1C SERIES

Anderson Greenwood Instrumentation Hand Valves

Selection Guide

HM1C	S	8	D	V	SG
BASIC SERIES	MATERIALS OF CONSTRUCTION	CONNECTIONS (INLET/OUTLET)	SEAT	PACKING	SPECIAL OPTIONS
HM1C	s SS-316/31L	46 ¾" MNPT x ½" FNPT	GN Non rotating plug stem	V PTFE	OCOO Gaseous oxygen clean
	C CS - carbon steel (A108CS)	6 ¾" FNPT x ¾" FNPT	D Delrin [®] (minimum temperature -40°F (-40°C))		SS All 316 SS construction
		66 ¾" MNPT x ¾" FNPT	e peek		SCL Bonnet Lock
		8 1" FNPT x 1" FNPT			LG4 Long Handle for use with PEEK Seat
		88 1" MNPT x 1" FNPT			

NOTES

1. Call factory for optional materials.

2. Cv = 9.8 max.

3. 316/316L SS valves meet the requirements of NACE MR0175/ISO 15156 (for chloride conditions ≤ 50 mg/l (ppm)) and NACE MR0103-2005.

